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Abstract

This paper describes the down-scaling link between
the regional atmospheric model and the surface
hydrology model currently implemented as part of the
Los Alamos National Laboratory's Rio Grande Coupled
Environmental Modeling Project.  Downscaling has
been extensively explored in recent years, usually in the
context of Global Circulation Models, and approaches
proposed in the literature are reviewed for usability in the
context of coupled environmental modeling.  The LANL
project requires a method which can be conditioned on
the gridded output of the meso-scale atmospheric model,
as well as covariates available at smaller scales (at least
topographic variables).  Best linear unbiased prediction,
or BLUP (essentially kriging) statistical models provide
one well-developed method for making such spatially
conditioned estimates.  The adaptation, utility and
drawbacks of this method for predicting across spatial
scales are discussed.

1. Coupled Environmental Modeling

Linking numerical environmental models together
to simulate the complete hydrogeologic cycle is a natural
approach to studying the potential effects of global
climate change on regional ecosystems.  Well-developed
models exist for global-scale and regional atmospheric
processes, for surface hydrological processes including
both overland and river flows, and for the subsurface
component of the hydrologic cycle.  When run
independently, boundary conditions must be provided
for each model.  These conditions can take the form of
arbitrary specifications (e.g., no-flow boundaries or
sinks), input data (e.g., observed daily temperature
ranges and precipitation), or a physical parameterization
of a boundary process (e.g., re-radiation of energy from
the surface of the earth.)  The linked models, by contrast,
might be run as a closed, or more nearly closed, system,
in which at least some of the boundary conditions
required by one model are provided by other models.

One problem which arises in implementing this
program is the mismatch among both the time and space
scales that are appropriate to each type of model.  Global
circulation models (GCMs) are run at spatial scales of 50
to 1000 km, and even the finest of these grids (which

already requires extensive computational resources) is
too coarse to resolve the effects of topographic relief,
land-use, and other significant surface features.  A meso-
scale atmospheric model is typically run with a spatial
resolution of 5 to 100 kilometers.  Again, the lower end
of this range represents the current state of the art with
the best computational resources available.  Moreover,
moving to smaller grid sizes entails not only
corresponding increase in computational resources but
also the development of new microphysics
parameterizations for the atmospheric processes
involved.  Atmospheric processes are generally modeled
with time steps on the order of one minute or less.  

Coupling a meso-scale atmospheric model to a
GCM has the potential to reduce the mismatch in scales
between the atmospheric and hydrologic components of
the modeling system.  However, surface and near-
surface hydrology, at least in a region of high
topographic relief or highly variable vegetation cover,
must be modeled at a spatial scale on the order of 50 to
2000 m, although significantly larger time steps (15
minutes to several hours) are adequate to describe the
evolution of the important processes.  Subsurface
processes can generally be modeled at larger spatial
scales than surface processes (although vertical
discrimination can be important to capture thin but
hydrologically significant stratigraphic layers), and at
much slower time-scales.  

In summary, even if well-established physical
process models are selected, non-trivial rescaling
interfaces must be constructed in order to link them into
a truly coupled model.  The Los Alamos National
Laboratory's Rio Grande Coupled Environmental
Modeling Project is attempting to link a meso-scale
atmosphere model (the Regional Atmospheric Modeling
System, or RAMS, Pielke et al. 1992) and a surface
hydrology model (Simulator for Processes of
LAndscapes:  Surface/subsurface Hydrology, or
SPLASH, Martens et al., in preparation, and Xiao et al.,
1996).  The completed system will also integrate a
subsurface model and an explicit river model.  RAMS
simulations require the use of two-way interactive,
nested grids, of which the largest (80 km spacing) covers
most of the western United States and parts of Canada
and Mexico), while the smallest (5 km spacing) covers
the upper Rio Grande in southern Colorado and northern
New Mexcio.  Figure 1 shows the elevations in the
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bottom layer of the RAMS grid for the smallest grid.
The Rio Grande heads in the San Juan mountains of
Colorado in the northwest part of this scene (between
300 and 350 km north in the coordinate system shown)
and flows east and then south into New Mexico, staying
to the west of the north-south Sangre de Cristo range.
The SPLASH subgrid encloses all of the area that drains

into the Rio Grande above Cochiti Dam, approximately
100 km north in this coordinate system.  The examples
later in this paper all come from the “Examples” region,
which is expanded in Figure 2.  Figure 2 also shows
every fifth point of the SPLASH grid in this region,
revealing significant detail in this mountainous terrain
that is masked at the 5 km scale.

Figure 1: Topography of the northern Rio Grande basin at 5-kilometer resolution
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2. Approaches

The general downscaling problem, particularly the
problem of predicting regional weather based on the
output of GCMs, has received a great deal of attention in
recent years.  For a recent review, see Wilby and Wigley
(1997).  Deterministic methods include embedding
limited area climate models within the larger global
circulation models in order to move from GCM scales to
scales at which surface effects such as topography and
vegetation can usefully be incorporated, which is critical
if the atmospheric model is to receive feedback from the
surface model.  Another deterministic approach uses
simplified parameterization of the subgrid dynamics
(e.g., Leung and Ghan 1998).

The much larger class of stochastic methods
includes many variations, of which we review only a
few.  Regession methods develop linear or non-linear
relationships between subgrid-scale parameters
(generally single-site observations) and coarser-scale
predictor variables. The latter are typically EOFs
(empirical orthogonal functions) for the large-scale
pressure fields, information which could also be
generated by a GCM.  For the disaggregation problem,
another step would be necessary to distribute the output
of the regression estimator from the estimated locations

across the gridded landscape.  One method for this is the
PRISM algorithm (Daly et al., 1994), which makes use
of the local topography.  A recent special issue of the
Journal of Geographic Information and Decision
Analysis (Dubois et al., 1998) contains a number of
articles applying kriging, splines, adaptive kernal
estimators and other spatial interpolation methods to
rainfall and other meteorological variables.

Weather pattern approaches develop probability
distributions for the subgrid-scale parameters
conditioned on a classification of synoptic atmospheric
information or “weather states”.  Such classification
schemes can be subjective or objective.  For
downscaling applications the classes must be based on
or related to indices of atmospheric circulation such as
pressure fields that can be produced by GCMs.  These
methods provide spatial simulations; the temporal
component must be provided by the forcing sequence of
weather states.  In the interesting modification of
Hughes et al. (1999), the forcing relationship is mediated
by a hidden Markov model, which improves the ability
of the model to reproduce wet- and dry-spell
frequencies.  Depending on what is described by the
conditional probability distributions, further distribution

Figure 2: Topography of the example area at resolutions of 5 km (RAMS) and 100 m (SPLASH)



of simulated point values across a grid may be needed
for the disaggregation problem. 

The scaling models of Perica and Foufoula-
Georgiou (1996) and Waymire, Over and Gupta (e.g.,
Gupta and Waymire 1993,  Over and Gupta 1994)
explicitly start with gridded data and develop
conditional probability distributions from which to
simulate on a smaller grid.  The parameters of these
models are scaling exponents (Perica and Foufoula-
Georgiou) or multiscaling functions (Waymire et al.)
and variances, which can be estimated from the gridded
information.  Perica and Foufoula-Georgiou show that
they may also be parameterized as functions of the
convective available potential energy, a measure of
convective instability in the pre-storm environment,
while Over and Gupta (1996) have examined the
evolution of the parameters over time within the course
of a storm.  

Because they do not require external parameter
estimation such as is needed for regression and weather
pattern methods, these scaling methods seem more
promising for the present application.  One problem with
them at present is that while simulations using these
methods provide realistic images, the average over all
simulations is simply the original large-scale
information.  In order to reproduce the effects of
topography, which are pronounced in the northern part
of the Rio Grande basin, it is essential to condition the
output not only on the large-scale gridded data, but also
on some spatially-distributed covariates.  Topographic
covariates including elevation, slope and aspect are
available on much finer grids than the output of the
meso-scale atmospheric model.

By far the best-developed algorithm for
conditioning predictions simultaneously on
observations of the field of interest and also on spatially-
distributed covarying fields is kriging, which we here
consider as a special form of best linear unbiased
prediction or BLUP (cf. Campbell 1991).  The
remainder of this paper explores the possibilities of
adapting this algorithm to the problem of statistical
disaggregation in the present context.

3. BLUP (Kriging) for Downscaling

The probabilistic model for observations which
underlies Best Linear Unbiased Prediction, or BLUP, is
the mixed effects linear model

(3-1)

where y is a vector of m observable random variables,
X and Z are known matrices, β is a vector of p unknown
parameters having fixed values (“fixed effects”), u and

e are vectors of q and m, respectively, random variables
(“random effects”) such that E(u) = 0, E(e) = 0, and 

(3-2)

where G and R and known positive definite matrices and
σ2 is a positive constant (which may or may not be
known.)  Given observations y, the BLUP procedure
provides estimates  of β and  of u which are linear
functions of the data y, unbiased in the sense that the av-
erage value of the estimate (with respect to the distribu-
tion of y) is equal to the expected value of the quantities
being estimated, and best in the sense of having mini-
mum mean square error within the class of linear unbi-
ased estimates.  Explicit expressions for  and  are
given by

(3-3)

and

(3-4)

where

. (3-5)

(Equation 3.5 shows that R and G need not be of full
rank as long as Q is invertible.  In particular, either may
be zero.  If G is zero, Eq. 3-3 reduces to the generalized
least squares estimate for β.)

The universal kriging equations can be derived
from the model in Eq. 3-1.  Specifically, consider the

problem of predicting the values of  at n
locations  given observations

 at m locations .   If

, replace X by SX and Z by SZ in the above
equations, where S is the  “sampling matrix” of

the form  (  is the  identity matrix

and  denotes the  matrix of zeros.)  The

columns of the  matrix X may include a column of
ones, one or more columns of coordinates (e.g., an x-
coordinate, a y-coordinate, or elevation), or columns of
other covariates.  For normal kriging, ,  and the

 matrix G is estimated as usual from the
variogram.  e is identified with the measurement errors
in the m observations to complete the general kriging
model, but frequently R=0.  Specifically, 
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(3-6)

and

(3-7)

for  , where   (P is

the  matrix ) partitions X into the first

m rows corresponding to the observations and the last n
rows corresponding to the prediction points, and

  (3-8)

is the similar partitioning of G.  Finally, the kriged pre-

dictions are .  (Equations
for the entries in the matrix  can be obtained from Eqs.
3-6 and 3-7, and these are what are usually referred to as
the “kriging equations”.)

For downscaling, we will consider taking Z to be
something more general than .  For example, for a

phenomenon y which is strongly elevation-dependent
such as temperature, but possibly with spatially varying
dependence on elevation, we may incorporate elevation
both as a fixed effect and as a random effect.
Specifically, to use elevation as a random effect, we take

, where A is a diagonal matrix of

elevations, and partition the 2N-vector of random

effects as , where the random effect w corresponds

to the spatially correlated coefficients of elevation.  If  u
and w are uncorrelated and the covariance matrix of

 is partitioned as , then the matrix Q defined

in Eq. (3.5) becomes .
Then the n predicted values  are computed as

, where again (cf. Eqs.
3-6 and 3-7)

, (3-9)

, (3-10)

and now

 , (3-11)

  being the obvious partition of A.

Computationally, this is reasonably efficient.  If
the downscaled values in a small grid are conditioned on
a 3 x 3 or 5 x 5 neighborhood of large-scale gridded
values, then the dimension of the matrix Q is 9 or 25.  In
the case where the only random effect is u, this
inversion only needs to be done once, but in general it
will need to be done for each large-scale grid.  If storage
is less important than computational time, these
inversions can be performed once and stored, provided
that the matrices G, F and A are not functions of time.
(In the current implementation, A is a function of time
only for precipitation, and S and F are fixed for all
variables.)

4. Variogram models for downscaling

Turning next to the problem of estimating S and F,
note that the m observations in the present context
consist of observations on the large-scale grid; their
“supports” are five-kilometer squares.   The n values to
be predicted have as supports much smaller squares, 100
m on a side.  Thus we are dealing here not with a point
process y(t) but with averages over supports of
different dimensions, i.e. processes  and 

which are averages of a point process y(t) over 5-km
and 100m supports V and v, respectively.  If we knew
the autocovariance function for the underlying point
process, we could compute the variograms of the
averaged processes.  However, the RAMS output
provides only “observations” of the larger averaged
process .  In this case it is useful, if not essential,
to consider variogram models that reflect some built-in
assumptions about scaling, so that we can get from the
variogram of the  process to the cross-variogram of

the  and  processes, which is needed to calculate

 and  .

The easiest variogram to scale with changing
support are those associated with a simple scaling point
process.  A point process y(t) is “simple scaling” if for
each λ>0 there is a multiplier  such that the joint
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distribution of  is the same as that of

.  It is straightforward to

show that, as a function of λ,  must be of the form

.  Averages of such processes scale similarly;

 is distributed like , where (in d
dimensions)

(4-12)

for some kernal function f (in this paper, f is a simple
“boxcar” function.)  Finally, the variograms of such av-
erages must be related by

 . (4-13)

The variogram  of simple scaling point

process must be proportional to , which is of course
unbounded, so that the covariance of the process is not
defined.  One modification to this simple model that has
been proposed in the literature takes explicit account of
the fact that both the support of the measurements and
the domain in which the process is realized are finite to
derive  bounded variogram models together with explicit
rules for scaling these models as the support and domain
are changed.  Specifically, Di Frederico and Neuman
(1997) observed that a power law variogram of the form

(4-14)

can be written as a weighted sum

(4-15)

in two different ways.  For ,   can be
chosen to be an exponential variogram,

(4-16)

where .  Alternatively,
for ,  can also be a Gaussian vario-
gram,

, (4-17)

where now .

Truncated forms of Eq. (4-13), where the limits of inte-

gration are taken to be  and  with ,
provide bounded variogram models.  Di Frederico and
Neuman propose that the finite cutoffs  and  be re-
lated to the linear dimensions of the doman, L, and the
sample support, l, respectively, by means of simple pro-
portionality:   and a lower cutoff

, resulting in three-parameter vario-
gram models (µ, H and , assuming that l and L are
known) for the exponential and Gaussian cases.  In par-
ticular, this choice for  results in a variogram which
scales in , i.e., in the support, as required by
Eq. (4-12).  Analytical expressions for these models,
which involve the incomplete gamma function, are pro-
vided in their paper.  In application we have introduced
a fourth parameter b relating the unknown domain size
L to the sample support l: L = bl.

Typically we find µ is about 1 and b is on the order
of 30.  Given empirical variograms computed not only
on the 5-km gridded output from RAMS but also 2 x 2
and 4 x 4 averages of this output (i.e., 10- and 20-km
grids), h can be estimated independently of the other
parameters using Eq. (4-12), and given H, µ and b, C0

is a function of the “sill” .  Thus fitting
the four parameters of the covariance model by a
standard minimization procedure is in theory a
reasonably stable procedure and might be implemented
or at least updated at each time step.  In practice, fitting
this model seems to be as much of an art as fitting other
popular variogram models. Some examples are shown in
Figure 3.  To date, therefore, we have fixed these
parameters for an entire run, but investigation of their
dependence on large-scale parameters (such as noted by
Perica and Foufoula-Georgiou) is a possibility for future
investigation.

5. Results

The equations of Sections 3 and 4 have been
implemented in a FORTRAN program to downscale
eight variables, as shown in Table 1.  Six of these fields
are provided as 20-minute averages by the RAMS
calculations, and are downscaled and passed on to
SPLASH with the same frequency.  Precipitation (as
liquid and solid precipitation) is provided at 2-minute
intervals but downscaled only when total precipitation
“tips a bucket” at 1 mm accumulation in some RAMS
cell (but not less frequently than once every 20 minutes.)
Liquid and solid precipitation are summed to a total mm
equivalent and converted to the log scale for
downscaling; zeros in the RAMS grid are set equal to a
small positive value for this purpose and the downscaled
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values are later truncated back to zero.  The fraction that
is snow is computed, and if there is a mixture of rain and
snow in the scene, then this fraction is converted to
logits and downscaled.  SPLASH accepts either rain or
snow, but not both, in each of its cells, so the downscaled
logits are simply transformed back to ones or zeros
depending on whether they are positive or negative.

As Table 1 shows, all variables are downscaled
with at least one fixed effect (a constant) except for total
precipitation, which is discussed below.  Elevation is a
second fixed effect for pressure, temperature, longwave
radiation and the fraction snow.  Elevation is also used
to augment the Z matrix for pressure and temperature;
the bottom two layers of RAMS data provide
information to estimate the covariance matrix F for a
second random effect w.  The ratio of the difference
between these bottom two layers and the corresponding
differences in elevation is also used to bias the
corresponding coefficient in the  vector; in particular,
the sign of the coefficient is constrained to match the
sign suggested by the RAMS data.  The BLUP
calculations for ,  and (if present)  are performed
on a subgrid of the 50 x 50 SPLASH cells within each 5-
km RAMS cells, based on RAMS data in a 25 x 25 km
neighborhood of that cell, and then further distributed to

Figure 3: Some variogram models (di Frederico and Neuman)
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Table 1: Downscaled Variables

Variable Trans-
formation X Z

Pressure (mb) - -

Temperature 
(oC )

- -

Mixing ratio
(g/g)

- - I

Shortwave radi-
ation (Watts/m2)

- - I

Longwave radi-
ation (Watts/m2) 

- - I

Windspeed 
(m/sec)

- - I

Total precipita-
tion (mm)

log - - I

Fraction snow logit I
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the remainder of the SPLASH cells by simple
interpolation, using detailed SPLASH elevation data to
multiple  and , as appropriate.  Where elevation is an
important covariate, the result closely follows elevation,
as in the case of temperature (see Figure 4.) It may also
be noted in Figure 4 that the overall SPLASH scene is
slightly warmer than the RAMS scene; this is because
the elevations at which temperature is reported in the
lowest layer of the RAMS model are on the average
about 150 m above the actual land surface.  

For a variable like shortwave radiation with no
non-constant covariates, the estimate is essentially a
smooth of the RAMS data.  However, even in this case
the fact that the covariance model for the off-diagonal
blocks of the G matrix (corresponding to the cross-
covariance between the two scales) is not the same as the
covariance model for the first on-diagonal block (the
autocovariance at the larger scale) allows predictions on
the small-scale grid that are slightly outside the range of
the large-scale data.

One thing which BLUP does not do naturally is to
conserve total precipitation within the area covered by a
RAMS cell, which will be desirable especially when the
feedback loop to RAMS is implemented.  Conservation
can be approximated however by (a) forcing the mean in
the log scale to be equal to the RAMS mean, and further

(b) accounting for the well-known bias, a function of the
logarithmic variance, which arises when transforming
back to the linear scale from the log scale.  Thus we do
not allow the algorithm to estimate even a constant term
in this case, but set X=0 and modify the results in each
RAMS grid as suggested above.  In the scene used for
the examples in this paper, where the maximum total
precipitation is just above 1 mm, the resulting absolute
error in conservation do not exceed 0.015 mm, and the
relative errors are less than 10% except for very small
values of total precipitation, and less than 2% where the
RAMS precipitation exceeds 0.2 mm.  This is in spite of
the fact that the maximum value on the SPLASH grid is
almost 70% larger than the maximum value on the
RAMS grid (Figure 5).  

Other comparisons between the RAMS and
downscaled SPLASH grids for this example are shown
in Table 2.  In particular, the downscaled scene has more
rain and less snow than the RAMS scene (which
includes both solid and liquid precipitation in several
cells), because the algorithm is putting more rain into
some narrow but deep valleys that are not resolved by
the 5-km RAMS grid.

6. Conclusions

Although not an intrinsically scaling procedure,
BLUP can be adapted to the downscaling problem by

Figure 4: Downscaling temperature (highly elevation dependent)
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making some assumptions (similar to those used in
explicitly scaling methods) about the behavior of the
covariance structure as scales change.  Unlike cascade or
wavelet methods, estimation of the variogram is the only
place that cross-scale information can be used, however.
The main advantage of BLUP is its ability to incorporate
spatially distributed covariates such as elevation, about
which there may be information at finer scales than
provided by the atmospheric model.  To the extent that
such covariates are important determinants of a
meteorological variable (as for pressure and
temperature) BLUP is probably the best approach.  We
have had moderate success as well applying it to
precipitation, although here it is probably not the best

possible model.  Methods which make more explicit use
of cross-scale information are intuitively more
appealing for simulation of precipitation, and might be
even more useful if some way to condition them on
topographic variables such as slope and aspect could be
developed.
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that is snow

68.3% 64.0%
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